skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scaccia, Phoebe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Light‐responsive materials enable the development of soft robots that are controlled remotely in 3D space and time without the need for cumbersome wires, onboard batteries, or altering the local environment. Azobenzene liquid crystal polymer networks are one such material that can move and deform in response to light actuation. Previous works have demonstrated azo‐based soft robotic grippers and transporters that are remotely powered by light. However, highly adaptive, automated spatiotemporal optical control over these materials has not yet been realized. Herein, a system for an azobenzene liquid crystal elastomer soft robotic arm is created by dynamically patterning light for independently maneuverable joints. The nonlinear material response to optical actuation is characterized, and the broad actuation space is explored with diverse arm configurations. A neural network is trained on the arm configurations and corresponding laser pattern to automate the pattern generation for a desired configuration. Finally, the azobenzene liquid crystal elastomer arm demonstrates complex targeted motion, marking an important step toward optically actuated soft robotics with applications ranging from optomechanics to biomedical tools. 
    more » « less